El Dr. Ing. Sergio Montico es titular de la Cátedra de Manejo de Tierras de la Facultad de Ciencias Agrarias de la Universidad Nacional de Rosario (UNR). Montico y su grupo vienen trabajando con la gestión de la energía en el sector rural desde el año 2004.
Durante la Jornada “Aportes para el análisis de la sustentabilidad de los Biocombustibles” que se llevó a cabo el 3 de Noviembre de 2010 en la UNR, Montico manifestó que «resulta sumamente importante analizar la eficiencia energética de los sistemas productivos agropecuarios representativos de la región en diversos escenarios ambientales. La transformación de la producción primaria en biocombustibles, integrados en una cadena agroenergética, es una cuestión controversial» (1).
En tres trabajos elaborados recientemente junto a otros investigadores de su cátedra, Montico se abocó a explorar otros materiales que pudieran usarse para la producción de biocombustibles, cuánta energía se gasta en la producción de biodiésel de soja y como afectan distintas condiciones ambientales a los cultivos (y por ende a los biocombustibles) producidos.
Los trabajos mencionados llevan por título “Energía potencialmente obtenible de los rastrojos de cultivos en Argentina”, “Valoración energética del transporte terrestre de la producción de soja en un sector de la pampa húmeda Argentina” y “Eficiencia y balance energético de biodiésel de soja en diferentes condiciones de degradación edáfica en el sur de Santa Fe”. A continuación los comentamos.
Los rastrojos como fuente energética
La dependencia de la matriz energética argentina de los combustibles fósiles hace necesario evaluar otras alternativas. Una de ellas es el redireccionamiento de los rastrojos (tallos, hojas y otros restos vegetales remanentes luego de la cosecha) hacia la producción de biocombustibles.
Dado que estos remanentes poscosecha normalmente cumplen funciones en la retención y transmisión del agua, el almacenamiento y reciclado de nutrientes y la reducción de los riesgos de la erosión hídrica y eólica su desvío podría ocasionar potenciales perjuicios ambientales.
Como indican los autores del estudio, el Dr. Montico y el Ing. Agr. Néstor Di Leo, este potencial redireccionamiento afectaría la sustentabilidad de la productividad agropecuaria en general, la conservación de los suelos y la estabilidad de los sistemas de producción poniendo en un peligro aún mayor a determinadas áreas ya de por sí amenazadas.
Por otro lado, existen claras evidencias de la disminución del rendimiento de los cultivos por la eliminación continua de los residuos de cosecha.
Las cuestiones enumeradas afectan especialmente a las provincias de Santa Fe, Córdoba y Buenos Aires ya que las mismas producirían las tres cuartas partes de la energía obtenida a partir de estos residuos de cosecha. Al mismo tiempo las tres realizarían el mayor aporte energético para procesar los rastrojos y poseen un mayor riesgo de sufrir la degradación de sus suelos.
En base a los puntos expuestos los investigadores concluyen que usar los rastrojos como fuente de materia prima para la producción de bioenergía, exige de un análisis crítico y objetivo dado su indudable impacto sobre los suelos y el medio ambiente.
Biodiésel de soja: ¿cuánta energía se gasta en producirlo?
Un punto interesante que los investigadores Di Leo y Montico se ocuparon de estudiar se enfoca en la cantidad de energía que insume el transporte del poroto de soja que posteriormente va a utilizarse para producir biodiésel.
Este planteo es clave al momento de decidir si conviene o no producir biodiésel a partir de soja cuando se considera la movilización de la cosecha desde los lugares de producción hasta la ciudad de Rosario.
Un dato llamativo que surge al evaluar el gasto en combustible para transportar la soja producida en la campaña 2008-2009 son las dramáticas diferencias encontradas entre transporte terrestre y ferroviario. Se gastan 220.734.546,36 litros de gasoil cuando se usa transporte automotor contra 74.704.593,59 litros usados al utilizar ferrocarril. Estos valores no son un dato menor, considerando la casi desaparición de ramales ferroviarios que caracteriza a nuestro país. El transporte de la cosecha por tren usa en promedio, entonces, 1/3 del gasoil usado por el transporte automotor considerando las provincias de Córdoba y Santa Fe. Esto será determinante al momento de evaluar la conveniencia de transportar soja para producir biodiésel.
El estado de los suelos incide en la producción de biodiésel a partir de soja
Al considerar la energía que se puede obtener del biodiésel es necesario tener en cuenta el gasto energético pre-industrialización donde se incluyen las etapas de producción de soja, transporte de la cosecha hasta el sitio de procesamiento y su transformación en biodiésel. Con estas consideraciones previas, los investigadores Denoia, Di Leo, Bonel y Montico evaluaron cómo se ve afectada la producción de soja por las lluvias y las condiciones del suelo (sin erosión o con erosión leve o severa). Ambas variables terminarán afectando tanto el balance como el rendimiento energético del biodiesel producido.
Si bien la erosión hídrica afectó los rendimientos simulados, no lo hizo tanto como el régimen de lluvias. En este último caso los investigadores encontraron diferencias sorprendentes con caídas dramáticas en los rendimientos de soja al considerar años secos y distintos grados de erosión del suelo: erosión severa (78,6% de disminución del rendimiento), erosión leve (76,3%) y sin erosión (75%).
El trabajo concluye que la cantidad de energía producida está vinculada estrechamente al régimen de lluvias y en mucho menor medida al grado de erosión hídrica. La máxima producción energética se alcanza en la situación de menor degradación y con el mejor régimen de lluvias. Por otra parte, el balance de energía en el proceso de producción de biodiésel a partir de grano de soja fue negativo cuando se simularon condiciones restrictivas respecto al régimen de lluvias.
En conclusión
Si bien en la actualidad se habla de biocombustibles de primera, segunda, tercera y hasta cuarta generación, son, por una cuestión de lógico desarrollo cronológico, los de primera generación aquellos que acaparan la mayor atención y generan las mayores controversias (2).
El estado actual de la investigación en biocombustibles los muestra formando parte de una situación intrincada que solo parece complicarse más a medida que se analiza el tema en mayor profundidad.
Algunas ideas que deberíamos tener en claro, de acuerdo al análisis del Dr. Montico, son (3):
Destinar grandes cantidades de maíz y soja para producir etanol y biodiésel acarrea aumento en los precios de cereales lo cual termina produciendo aumentos en otros sectores (abonos, carnes, huevos, productos lácteos).
Todavía cuesta más producir biocombustibles que combustibles fósiles. El estímulo a la producción y el consumo de biocombustibles que se da en los países productores importantes es resultante de las medidas de control de precios aplicadas.
Para algunos autores obtener biocombustibles de maíz, girasol y soja es inviable económica y técnicamente. En estos casos solo tendría sentido el uso de residuos orgánicos.
Por último, es necesario profundizar la investigación en biocombustibles de primera generación hasta tanto se desarrolle la producción de los de segunda y tercera generación. En especial para determinar si los cereales y oleaginosos deben destinarse a la alimentación o a la energía.
FUENTE: ROSARIO 3